
Magic Wall
(working title)

David Croft
SCOPE Sessions, 18.08.2011



THE PRINCIPLE
Magic Wall



Electromagnetic Spectrum



Human Eye Model











THE HARDWARE
Magic Wall



It’s not a Kinect (Damnit)

 Has built in IR laser projector

 Only outline needed, not depth

 Minimum range 1.2m, maximum range 3.5m

 Intrusive

 Proprietary connector

 640×480 @ 30fps (only)

 Most functionality is within the Xbox

 Expensive (100€+)



Inaccurate even at short range



Camera

 Cheap

 Fast frame rate

 Good resolution

 “Hackable” – to remove IR-blocking filter 
and add IR band-pass filter

 Cross-platform drivers



PlayStation Eye Camera

 640x480 @ 60fps (320x240 @ 120fps)

 Free community-written drivers for 
Windows, Mac, Linux (from 2.6.29)

 Already in use for open source multi-touch 
tables

 IR hacking well documented

 Very cheap for its quality (15€)



Hacking the PS3 Eye

 Get it open (hard!)

 Remove built-in IR-blocking filter

 Fully-exposed and developed camera film, 
or floppy disk, work OK as visible light filter

 Better: specialised IR band-pass filter

 Get it closed without smashing the CCD 
sensor (even harder!)













IR Bandpass Filter













Infrared Emission

 Filtered incandescent lamps

 “IR” heat lamps (but also heat and light, and 
expensive)

 Lasers

 LEDs



Infrared floodlight

 Contrast between wall and ambient IR 
requires powerful emitters

 Position behind viewers requires unusual 
angle

 Should scale well to larger areas

 Still looking for a good source



What wavelength?

 850-875nm seems best
with the cameras I tested

 Also the cheapest

 Minor visible red glow,
but only if you look at
the LEDs

 Filter will depend on
this too



850nm

 Bleeds slightly into visible spectrum

 Doesn’t seem visible on reflection – but 
need to test with a child!



THE SOFTWARE
Magic Wall



Requirements

 OpenCV (Open Computer Vision) library

 Much useful but cryptic real-time computer 
vision functionality

 Processing

 Simplified programming environment for 
visual artists

 My library

 Wraps all of the above.

 Will be released soon at www.davidc.net



Software Flow



Source



Source



Source Controls



Calibration



3D Calibration

 Camera and projector are not at the exact 
same position

 Lenses and FOV are different anyway

 Need to recalibrate so that the final 
projected image lines up with bodies



3D Calibration

 Similar principle to touchscreen 
calibration, but in 3D space

 Correlate points in both projector 
and camera space

 Naïve implementation ignores 
perspective, but is fast and 
sufficient for not

 OpenCV has calibration routines



Calibration – Source Image



Calibration – Control Points



Calibration - Output



Calibration Method

 Turn off floodlights

 IR LED on a stick

 Search for a single blob of a given size range

 Take the average of its centre of gravity over 
a period of time

 Repeat for other points

 Run calibration routine

 Then re-project each source frame



Calibration Markers



Calibration



Calibration Controls



Blur



Threshold



Blur and Threshold Controls



Classification



Blob Detection



Blob Filtering



Contour Approximation



Blob Detection Controls



Blob Tracking



Scene



Display Controls



Montage



Scene Controls



Example Scenes

 Spotlight

 Glow

 Image projection

 Shadow trail

 Flames



Example Scenes

 Video projection

 Insects/flocking

 Rain

 Beach ball game

 Forest



Example Scenes

 Develop a reference hardware design

 Finish and release software as open source

 Invite others to develop scenes



Next Steps

 Find better floodlights

 Improve, finish and optimise software

 Write more demos

 Turn it into a Processing library

 Release it as open source software with a 
hardware reference design

 Regions of interest

 Camera and projector tiling



Further information

 Documentation will appear over the next 
few weeks at www.davidc.net

 david@davidc.net


